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Figure 1. Overview of the Reconstruction Improvement of Our Hierarchy UGP on Large-Scale and Large-Motion Scenarios.
On the large-scale dynamic scene, the reconstruction quality of Hierarchy UGP significantly outperforms previous methods [4, 40]. For
reconstruction of pedestrian with large motions, Hierarchy UGP also demonstrates large improvements.

Abstract

Recent advances in differentiable rendering have signifi-
cantly improved dynamic street scene reconstruction. How-
ever, the complexity of large-scale scenarios and dynamic
elements, such as vehicles and pedestrians, remains a sub-
stantial challenge. Existing methods often struggle to scale
to large scenes or accurately model arbitrary dynamics.
To address these limitations, we propose Hierarchy UGP,
which constructs a hierarchical structure consisting of a
root level, sub-scenes level, and primitive level, using Uni-
fied Gaussian Primitive (UGP) defined in 4D space as the
representation. The root level serves as the entry point to
the hierarchy. At the sub-scenes level, the scene is spa-
tially divided into multiple sub-scenes, with various ele-
ments extracted. At the primitive level, each element is
modeled with UGPs, and its global pose is controlled by
a motion prior related to time. This hierarchical design
greatly enhances the model’s capacity, enabling it to model
large-scale scenes. Additionally, our UGP allows for the
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reconstruction of both rigid and non-rigid dynamics. We
conducted experiments on Dynamic City, our proprietary
large-scale dynamic street scene dataset, as well as the
public Waymo dataset. Experimental results demonstrate
that our method achieves state-of-the-art performance. We
plan to release the accompanying code and the Dynamic
City dataset as open resources to further research within
the community.

1. Introduction

The reconstruction of large-scale dynamic urban scenes
plays a crucial role in various applications, such as au-
tonomous driving [12, 16, 42], virtual reality (VR), and
smart cities. The core objective of this task is to reconstruct
large-scale scenes from long sequences of image frames
while accurately modeling dynamic elements, such as ve-
hicles and pedestrians. Traditional methods [1, 27, 28, 45]
face significant challenges in rendering quality and handling
dynamic elements.

Recently, several methods [4, 40, 49, 50] have intro-
duced compositional 3D Gaussian representations to model



dynamic street scenes, yielding impressive results. How-
ever, these approaches primarily focus on small-scale or
fragmented scenes and exhibit limited performance when
applied to large-scale environments. Furthermore, they
encounter difficulties in accurately modeling the dynamic
changes of complex non-rigid objects, such as pedestri-
ans. Consequently, these methods still face significant chal-
lenges in addressing large-scale dynamic street scenes in
real-world scenarios. Modeling such scenes requires repre-
senting static objects, dynamic rigid objects, and dynamic
non-rigid objects with different Gaussian primitives. Large-
scale scenes often involve tens of millions of Gaussian
primitives, making it a challenging task to efficiently orga-
nize them within a unified framework while ensuring real-
time rendering.

In this paper, we present Hierarchy UGP, a novel tree-
structured Unified Gaussian Primitive, designed to address
the challenges of reconstructing large-scale dynamic scenes
from long image sequences. Specifically, our approach con-
sists of three hierarchical levels: the root level, sub-scenes
level, and primitive level, with the root level serving as
the entry point for managing the entire hierarchy. We spa-
tially partition the large-scale dynamic scene into multiple
sub-scenes, forming the sub-scenes level. Within each sub-
scene, we extract four types of elements—sky, background,
rigid objects, and non-rigid objects. These elements are rep-
resented by UGPs at the primitive level, where each element
is meticulously designed with distinct attributes specific to
its characteristics, ensuring accurate modeling. Addition-
ally, we introduce Level of Detail (LOD) techniques to en-
able real-time rendering of large-scale dynamic scenes. To
the best of our knowledge, this is the first approach capable
of reconstructing large-scale dynamic scenes with real-time
rendering, while significantly enhancing accuracy of mod-
eling non-rigid entities.

Our main contributions are summarized as follows:

• We introduce Hierarchy UGP, enabling high-fidelity and
efficient reconstruction of large-scale dynamic scenes,
along with real-time rendering.

• We propose a series of training strategies that address
various challenges in reconstructing large-scale dynamic
scenes.

• We collected the Dynamic City dataset, a large-scale dy-
namic scene dataset, and conducted experiments on both
this dataset and the publicly available Waymo dataset,
demonstrating the superiority of our approach over base-
line methods. We plan to open-source the Dynamic City
dataset and the accompanying code to support community
development.

2. Related Works

2.1. Large Scale Scene Reconstruction
For decades, researchers have focused on 3D reconstruc-
tion of large-scale scenes. Early works [1, 9, 17, 23, 30, 51]
applied the Structure-from-Motion (SfM) pipeline [28] to
reconstruct such environments. However, these methods in-
curred substantial computational costs, requiring extensive
time and resources, and suffered from error accumulation
and scene drift, which compromised reconstruction quality.

In recent years, the rapid development of neural radiance
fields [2, 8, 10, 21, 25, 35, 39, 48] has led to a paradigm shift
in reconstruction techniques, enabling notable progress in
large-scale scene reconstruction. [37] enhanced model rep-
resentation with multi-level residual blocks, enabling city-
scale reconstruction. However, this approach remains com-
putationally demanding and is unsuitable for ground-level
data. [34] and [32] addressed large-scale scenes by parti-
tioning them into blocks, each represented by a multi-layer
perceptron (MLP), but these methods also demand exten-
sive training time and computational resources, with low
rendering efficiency.

Recently, 3DGS advanced the field by using point-based
differentiable rendering to achieve high-quality reconstruc-
tion and efficient rendering. [18] and [19] further enabled
efficient, high-quality city-scale reconstructions using block
Gaussians, while [26] and [15] achieved high-quality recon-
struction and real-time rendering of large-scale scenes by
leveraging hierarchical tree-structured Gaussians.

However, these methods are unable to effectively model
complex dynamic objects in large-scale dynamic scenes,
which limits the full representation of the scene.

2.2. Dynamic Scene Reconstruction
Dynamic scene reconstruction has been a long-term re-
search task, and with the development of differentiable ren-
dering techniques, especially the emergence of NeRF [21]
and 3DGS [14], many excellent algorithms [3, 4, 6, 7, 13,
33, 40, 43, 44] have been developed to achieve impressive
results.

Recently, some methods [6, 44] have introduced 4DGS
to represent dynamic scenes, while others [3, 4, 40] have
decoupled the scene into a static background and a dy-
namic foreground, using time-related spatial information
priors to control the dynamic foreground. However, these
approaches also have their limitations. For example, 4DGS
[44] and 4D-Rotor GS [6] are limited to small-scale scenes,
making them less suitable for complex urban dynamic en-
vironments. On the other hand, Street Gaussians [40]
achieved high-fidelity reconstruction and real-time render-
ing by leveraging the 3DGS scene representation, but it
struggles to model the subtle deformations of dynamic ob-
jects and cannot handle non-rigid objects. Similarly, PVG



[3] introduces Periodic Vibration Gaussians to represent
dynamic scenes, achieving static-dynamic decomposition
by categorizing Gaussians based on their lifespans. Fur-
thermore, OmniRe [4] models pedestrians using the SMPL
model [20], specifically designed for human modeling, and
applies deformable-GS [36] to parts that SMPL cannot fit.
While this approach achieves good results by controlling
these parts using spatial information, it is limited in its gen-
eral applicability, and the reconstruction quality of parts that
SMPL cannot fit remains suboptimal.

3. Method
Given a sequence of images over a long temporal span
captured from dynamic large-scale scenes, our goal is to
achieve high-fidelity reconstruction and real-time render-
ing of large-scale scenes containing arbitrary dynamic el-
ements. To this end, we propose a novel scene representa-
tion method, Hierarchy Unified Gaussian Primitive (Hier-
archy UGP), which aims to efficiently represent large-scale
dynamic scenes. The core of this method is the construction
of a hierarchical UGP tree structure, providing an efficient
representation for this complex mix of static and dynamic
environments.

In this section, we first describe the structure of Hierar-
chy UGP in Sec.3.1. Then, Sec.3.2 discusses the render-
ing process of Hierarchy UGP. Finally, we introduce how to
build Hierarchy UGP in Sec.3.3.

3.1. Hierarchy UGP
Previous methods face limitations in modeling large-scale
dynamic scenes: those capable of handling large-scale en-
vironments struggle with dynamic elements, while meth-
ods focused on dynamic elements are generally restricted
to small-scale or fragmented scenes, making it difficult
to capture comprehensive street scenes. Inspired by prior
work [15, 44], we propose Hierarchy UGP, which models
large-scale scenes with arbitrary dynamic elements through
hierarchy-structured Unified Gaussian Primitives (UGPs).

Our hierarchy structure consists of three levels: the Root
Level, the Sub-scenes Level, and the Primitive Level. The
root level abstracts the entire scene and serves as the entry
point for managing the hierarchy. At the sub-scenes level,
the large-scale scene is divided into multiple sub-scenes
based on spatial information and various scene elements are
extracted. Each sub-scene is reconstructed individually and
merged at the root level. At the primitive level, we model
various scene elements by UGPs with distinct properties.

Sub-scenes Level Large-scale scene reconstruction faces
challenges in memory, speed, and model capacity, while
typical scenes are easier to handle. To address this, we
partition the large-scale scene into sub-scenes for parallel
reconstruction.

Given thousands of images captured by calibrated cam-
eras covering a large-scale scene, we begin by spatially
defining the size of each sub-scene, which enables us to
partition the scene into multiple sub-scenes. Subsequently,
based on the spatial relationships between the camera poses
and each sub-scene, we assign the corresponding image se-
quences to their respective sub-scenes.

We categorize the elements in each sub-scene into four
types: background, sky, rigid objects, and non-rigid objects.
During reconstruction, each element is modeled in its re-
spective local coordinate system. When rendering, the el-
ements are transformed into the global coordinate system,
followed by joint optimization. The transformation of each
element from the local to the global coordinate system is
governed by a time-dependent motion prior:

M(t) = (Rt | Tt), (1)

where Rt and Tt represent the rotation matrix and trans-
lation vector of the element in the global coordinate system
at time t, respectively. For any time t, the motion for the
background and sky is defined as M(t) = (I | O), while
for rigid and non-rigid objects, Rt and Tt can be readily
obtained using an off-the-shelf tracker [24, 41]. By decou-
pling various elements within sub-scenes, we enable more
refined modeling at the primitive level.

Primitive Level Inspired by [6, 44], we model the ele-
ments within a sub-scene as Unified Gaussian Primitives
defined in 4D space:

G = (µ,Σ, o,SH) ∈ R4 × S4++ × [0, 1]× R16, (2)

where µ = (µx, µy, µz, µt) is the 4D mean vector, rep-
resenting the spatial-temporal position of the primitive. Σ
is the 4D covariance matrix, capturing the spatial-temporal
extent. o is the opacity of the primitive, controlling its
visibility during rendering. SH denotes the spherical har-
monic coefficients, encoding the appearance properties of
the primitive.

The covariance matrix Σ is parameterized to represent a
4D ellipsoid as follows:

Σ = RSSTRT (3)
Here, S = diag(sx, sy, sz, st) is a diagonal matrix

representing the scale of the UGP in 4D space, and the
4D rotation is parameterized by two isotropic quaternions,
ql = (a, b, c, d) and qr = (p, q, r, s) [44] and constructed as
follows:

R = L (ql)R (qr)

=


a −b −c −d
b a −d c
c d a −b
d −c b a



p −q −r −s
q p s −r
r −s p q
s r −q p

 (4)



Figure 2. Method Overview. The large-scale dynamic scene is constructed as a hierarchical tree structure, where both static and dynamic
elements are represented using Unified Gaussian Primitives, enabling efficient large-scale dynamic scene reconstruction. As shown in
(a), the scene hierarchy consists of the Root Level, Sub-scenes Level, and Primitive Level. The Root Level serves as the entry point for
managing the entire structure. At the Sub-scenes Level, the scene is spatially divided into multiple sub-scenes, which are further categorized
into Sky, Background, Rigid Objects, and Non-Rigid Objects. As depicted in (b), at the Primitive Level, each element is modeled using
Unified Gaussian Primitives with distinct properties.

Based on the characteristics of different types of ele-
ments in a sub-scene, we design UGPs with different prop-
erties. Specifically, since the temporal scale st of the UGP
controls its temporal influence range, for non-rigid objects,
we initialize st based on the frame rate of the data collec-
tion:

st = − (λvdt)2

2log(oth)
, (5)

where, λ is a hyperparameter used to fine-tune the initial
st, v is the image acquisition frequency, dt is the time du-
ration corresponding to each frame, and oth is the opacity
threshold for pruning.

For background and rigid objects, whose positions µ in
the local coordinate system do not change over time, we set
µt in the 4D mean vector to 0. We also set the 4D rotation
quaternion qr to (1, 0, 0, 0) and set st to ∞, indicating that
their shape remains unchanged over time. For the sky ele-
ment [15], we build upon these settings and optimize only
their opacity o and spherical harmonic coefficients SH.

3.2. Rendering Process
In this subsection, we describe the rendering process of
Hierarchy UGP, which comprises three primary stages:
spatial-temporal projection, primitives selection, and image

synthesis.

Spatial-Temporal Projection To render Hierarchy UGP,
we need to perform spatial-temporal projection on the
UGPs modeling each element. Specifically, given a time
t, we first obtain the conditional 3D mean and covariance
of the UGPs at time t through a slicing process [6, 44]:

µxyz|t = µ1:3 +Σ1:3,4Σ
−1
4,4 (t− µt)

Σxyz|t = Σ1:3,1:3 − Σ1:3,4Σ
−1
4,4Σ4,1:3

(6)

After slicing the UGP into 3D space, we use the motion
prior of each element at that time step, M(t) = (Rt | Tt),
to transform the UGPs from the local coordinate system to
the global coordinate system:

Σglobal = RtΣxyz|tR
T
t

µglobal = Rtµxyz|t + Tt

(7)

Primitives Selection After performing spatial-temporal
projection, we select the appropriate UGPs for rendering
based on the given viewpoint, rather than directly render-
ing all UGPs. This process accelerates the rendering speed,
enabling real-time rendering of large-scale scenes. Specifi-
cally, starting from the root node of the Hierarchy UGP, we



iteratively select UGPs at each level until sufficiently accu-
rate UGPs are chosen to render the image.

To achieve this, we set a threshold value τ and begin
the selection process from the root node of the hierarchy
[15, 19, 29]. For each UGP, we compute its diameter on the
image plane. We then check if the diameter is smaller than
τ or if the primitive has no child nodes. If neither condition
is met, we proceed to evaluate the child nodes of the current
UGP, and repeat the assessment process. This iterative se-
lection continues until either all UGPs meet the condition of
having a diameter smaller than the threshold τ , or no further
child nodes are available.

To calculate the diameter of a UGP on the image plane,
we first project its covariance matrix onto the 2D image
plane:

Σ′ = JWΣglobalW
TJT , d = 2

√
λmax(Σ′), (8)

where W is the view transformation matrix and J is
the Jacobian matrix representing the affine approximation
of the projection transformation. The projected covariance
matrix Σ′ defines an ellipse on the image plane, with d, the
diameter of the UGP, determined by the length of the major
axis of this ellipse. Additionally, λmax(Σ

′) represents the
largest eigenvalue of the covariance matrix Σ′.

Image Synthesis After computing the color c of each
UGP using spherical harmonics (SH), we render the image
I at time t using differentiable alpha blending:

I(t) =
N∑
i=1

αt|ici

i−1∏
j=1

(
1− αt|j

)
, (9)

where αt is the opacity weighted at time t, based on the
probability of each UGP’s presence at that moment:

αt = exp(
1

2
Σ−1

4,4(t− µt)
2)α (10)

3.3. Building the Hierarchy UGP
In this subsection, we outline the process of building the Hi-
erarchy UGP, which is divided into three stages: initializa-
tion of the global UGP scaffold, optimization of sub-scenes
level, and the final merging process.

Initialization We start by initializing a UGP model us-
ing LiDAR point clouds from large-scale dynamic scenes.
Through coarse training, we construct a global UGP scaf-
fold. During sub-scene initialization, the global UGP scaf-
fold distributes global Gaussians to the sub-scenes based
on spatial partitions, ensuring consistent training of all sub-
scenes.

Optimization Subsequently, we perform training on each
sub-scene individually. Leveraging the motion prior of each
element, we model the elements within each sub-scene in
local space and then transform them into global space for
joint optimization.

During optimization, we use a Block-wise Objects train-
ing strategy for dynamic objects that span multiple sub-
scenes, avoiding interference between sub-scenes. To im-
prove the reconstruction quality of non-rigid objects, we
perform the temporal scale st initialization, as shown in
Equation 5, to enhance fitting in areas with large motion
amplitudes.

We use the following objective function to optimize the
sub-scenes:

L = λrgbLrgb + λdepthLdepth + λwarpLwarp, (11)

where Lrgb combines the L1 and SSIM losses, Ldepth is
the L1 loss between rendered depth and the depth generated
by projecting sparse LiDAR points onto the camera plane,
and Lwarp is the L1 loss between rendered image and the
virtual warping view [5]. For more details, please refer to
the supplementary materials.

Hierarchy Construction Drawing inspiration from [15,
19, 26], we organize the UGPs into a BVH (Bounding Vol-
ume Hierarchy) tree and compute UGP attributes for the in-
termediate nodes. Specifically, we recursively perform spa-
tial binary median splits on the UGPs until each UGP is
assigned to a leaf node. Once the BVH tree is constructed,
we begin with the leaf nodes, which are at level 1, and re-
cursively merge the UGP attributes of the child nodes in a
bottom-up manner.

Higher-level UGPs exhibit larger three-dimensional vol-
umes, resulting in a coarser representation of the scene. In
contrast, lower-level UGPs have smaller three-dimensional
volumes, enabling a more refined representation. We ob-
tain the attributes of the l level UGPs by interpolating the
attributes of the l − 1 level UGPs based on elaborately de-
signed weights w [15]:

Gl(µ,Σ, o,SH) =

N∑
i

wiGl−1(µ,Σ, o,SH) (12)

Since dynamic objects generally occupy limited space
within the scene, we empirically set them as leaf nodes
to achieve a better trade-off between rendering quality and
speed.

Merging at the Sub-scenes Level After constructing the
hierarchy for all sub-scenes, we merge them into the root
level. For each sub-scene, we load the UGPs and filter out
unnecessary ones based on their distance from the center



Large 001 Large 002 Sub-scene 001 Sub-scene 002

Method PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
4D-GS [44] 26.30 0.844 0.277 36 24.59 0.826 0.285 30 27.11 0.892 0.156 50 25.51 0.859 0.194 45
Hierarchical GS [15] 26.74 0.861 0.188 28 25.14 0.843 0.202 15 26.80 0.892 0.179 90 25.94 0.851 0.187 30
Street GS [40] 25.59 0.834 0.285 19 23.94 0.814 0.301 21 25.94 0.864 0.210 33 26.18 0.833 0.220 22
OmniRe [4] 24.48 0.776 0.336 19 22.17 0.734 0.386 20 26.24 0.839 0.146 15 24.08 0.763 0.171 13
Ours 27.01 0.862 0.180 32 25.25 0.844 0.198 21 27.81 0.894 0.150 102 27.61 0.870 0.168 44

Table 1. Quantitative Comparison on Dynamic City. We selected every 10th frame as a test frame and computed visual quality metrics
and frames per second (FPS) for our method compared to previous work on two large scenes and two sub-scenes. For each large scene, we
loaded the entire hierarchical structure and used an LOD level of τ = 9. For each sub-scene, we used an LOD level of τ = 1. Each cell is
colored to indicate the best and second best .

(a) GT

(c) OmniRe (d) Street GS

(b) Ours

(f) Hierarchical GS(e) 4D-GS

Figure 3. Interpolation Comparison on the Dynamic City Dataset. We conducted qualitative experiments on the Dynamic City Dataset
by selecting every 10th frame as a test frame. The results show that our method significantly outperforms others in terms of reconstruction
quality, achieving high-quality reconstructions of large-scale dynamic scenes.

of the sub-scene. The UGPs are then sequentially merged
at the root level. Using a partitioning strategy with 50%
spatial overlap between adjacent sub-scenes, we seamlessly
integrate the sub-scenes [15, 18, 32]. The global UGP scaf-
fold ensures consistent training of the sub-scenes, which al-
lows the resulting merged scene to maintain visual continu-
ity without noticeable boundary artifacts.

4. Experiment

In this section, we first present our implementation de-
tails in Sec.4.1. Next, we provide metric evaluations com-
paring several state-of-the-art methods on the Dynamic
City Dataset (Sec.4.2) and the Waymo Open Dataset [31]
(Sec.4.3). We use PSNR, SSIM, and LPIPS [47] to evaluate
the visual quality of interpolation experiments, FID [11] for
extrapolation experiments, and measure the rendering FPS.
Ablation studies on specific strategies from the paper are
discussed in Sec.4.4.

4.1. Implementation Details
We implemented our method using PyTorch [22] and cus-
tom CUDA kernels. Experiments on the Dynamic City
Dataset were run on H20 GPUs, completing parallel train-
ing of multiple sub-scenes within 3 hours. For the Waymo
Dataset, experiments on a single 4090 GPU completed
training in 2 hours. See supplementary material for details.

4.2. Dynamic City Dataset
Currently, large-scale dynamic street scene datasets are not
publicly available. To address this gap, we introduce the
Dynamic City Dataset, which comprises sequences of im-
age and radar data captured at a frequency of 10 Hz, cover-
ing street scenes ranging from 600 meters to over one kilo-
meter. Compared to publicly available datasets like Waymo
[31] and PandaSet [38], the Dynamic City Dataset includes
a broader range of street scenes. We intend to release this
dataset as an open resource to advance research in large-
scale dynamic street scene reconstruction.

To demonstrate the efficacy of our algorithm and ensure



Scene Reconstruction Novel View Synthesis

Methods 014 023 014 023

PSNR*↑ SSIM*↑ PSNR↑ PSNR*↑ SSIM*↑ PSNR↑ PSNR*↑ SSIM*↑ PSNR↑ PSNR*↑ SSIM*↑ PSNR↑
4D-GS [44] 19.97 0.575 30.86 19.40 0.622 30.00 18.95 0.486 30.24 18.32 0.590 28.19
Hierarchical GS [15] 16.02 0.400 30.74 13.58 0.432 24.65 15.93 0.369 30.58 13.42 0.430 24.34
Street GS [40] 23.33 0.719 34.01 24.75 0.815 32.14 21.90 0.637 33.34 21.79 0.688 30.75
OmniRe [4] 22.16 0.678 32.93 29.23 0.862 36.40 19.61 0.493 30.67 23.07 0.724 32.56
Ours 30.20 0.889 36.10 34.10 0.911 37.16 24.23 0.665 31.69 21.64 0.597 31.27

Table 2. Quantitative Comparison on Waymo. We selected every 10th frame as a test frame and computed visual quality metrics, where
* denotes the metrics for the pedestrian regions. Each cell is colored to indicate the best and second best .

(a) Origin View (b) Ours NVS

(c) OmniRe NVS (d) Street GS NVS

(e) 4D-GS NVS (f) Hierarchical GS NVS

Figure 4. Extrapolation Comparison on the Dynamic City
Dataset. We shifted the original viewpoint by 2 meters to the left
to evaluate extrapolation performance. The results show that our
method significantly outperforms others in extrapolation.

FID↓ Lane Shift@2m

Methods Large 001 Large 002 Sub-scene 001 Sub-scene 002

4D-GS [44] 77.83 84.60 108.39 68.14
Hierarchical GS [15] 78.73 70.64 76.63 65.81
Street GS [40] 90.99 79.67 65.56 63.57
OmniRe [4] 90.35 119.96 68.83 58.11
Ours 68.27 63.36 51.59 56.30

Table 3. Extrapolation Comparison on Dynamic City. We con-
ducted an extrapolation comparison on the Dynamic City dataset
by calculating the FID, and the results show that our method con-
sistently outperforms others.

a fair comparison, we conducted two experiments: one with
large-scale dynamic scenes and the other with sub-scenes
extracted from large-scale scenes.

The results presented in Table 1 and Figure 3 demon-
strate that, for interpolation tasks, our method consistently
outperforms existing approaches in both large-scale dy-
namic scenes and smaller sub-scenes. Moreover, by in-
tegrating LOD techniques and engineering enhancements
based on gsplat [46], our method enables real-time render-
ing for large-scale dynamic scenes.

Furthermore, the results in Table 3 and Figure 4 show
that, for extrapolation tasks, our method significantly out-
performs all other baseline methods. This improvement is
primarily attributed to the supervision from virtual warping
views. Additional experimental results and a more detailed
discussion of virtual warping views can be found in the sup-
plementary material.

4.3. Waymo Dataset
Waymo [31] is a real-world dataset comprising thousands of
driving segments collected on actual roads. Each segment
contains 20 seconds of sensor data sampled at 10 Hz.

The quantitative results in Table 2 and the qualitative re-
sults in Figure 5 demonstrate that our method outperforms
others in terms of reconstruction. Specifically, our approach
achieves significantly higher visual metrics for human ob-
jects, highlighting its strong capability to model dynamic
elements, even in areas with large motion.

Additionally, the results in Table 2 show that both
our method and OmniRe [4] experience more pronounced
degradation in visual quality on the test frames. This degra-
dation occurs because, in these frames, pedestrian move-
ment is completely unknown, and neither UGP nor SMPL
can fully capture the pedestrian’s motion, leading to a no-
ticeable performance drop. Nevertheless, our method re-
mains competitive with state-of-the-art approaches.

Methods PSNR↑ PSNR+ ↑
w/o Block-wise Objects 28.58 21.51
w/ Block-wise Objects 28.64 23.15

Table 4. Ablation on Block-wise Object training strategy. Here,
+ denotes the metrics for the vehicle regions. The results show that
our Block-wise Object training strategy significantly improves the
visual metrics for moving objects.

4.4. Ablation Study and Analysis
Block-wise Objects training strategy Table 4 and Fig-
ure 6 show the qualitative and quantitative results of our
ablation study on the Block-wise Objects training strategy.



(a) GT (b) Ours (c) OmniRe (d) Street GS (f) 4D-GS(e) Hierarchical GS

Figure 5. Qualitative Comparison on Waymo Dataset. Our method significantly improves performance in large-motion dynamic areas,
such as the feet and legs of pedestrians, compared to others.

w/ Block-wise Objects w/o Block-wise Objects

Figure 6. Ablation on Block-wise Objects training strategy. We
emphasize the impact of our Block-wise Objects training strategy
on vehicles to showcase its effectiveness.

w/ Temporal Scale Initialization w/o Temporal Scale Initialization

Figure 7. Ablation on Temporal Scale Initialization. We em-
phasize the impact of Temporal Scale Initialization on the large-
motion components of pedestrian modeling to visually demon-
strate its effectiveness.

More details about this strategy are provided in the supple-
mentary material.

Methods PSNR↑ SSIM↑
w/o Temporal Scale Initialization 23.22 0.791
w/ Temporal Scale Initialization 34.93 0.943

Table 5. Ablation on Temporal Scale Initialization. We con-
ducted an ablation study on Temporal Scale st Initialization in the
Waymo dataset and calculated the visual metrics for humans.

Temporal Scale Initialization Table 5 and Figure 7 show
the results of our ablation study. The temporal scale st ini-
tialization, as shown in Equation 5. We found that the best
practice is to initialize st based on the frame rate of the data
collection, which has a significant impact on the results.

NVS w/ Virtual Warping View NVS w/o Virtual Warping View

Figure 8. Ablation on Virtual Warping View. The figure demon-
strates that supervision by the virtual warping view can effectively
improve the visual quality of the novel view (with the original
viewpoint shifted by 2 meters).

Virtual Warping View We shifted the original viewpoint
2 meters to the left and conducted an ablation study on
the supervision of virtual warping views for novel views.
Figure 8 demonstrates its effectiveness. For more details,
please refer to the supplementary material.

5. Conclusion

This paper introduced Hierarchy UGP, a hierarchical model
that enhances representation capacity for large-scale dy-
namic scenes and enables real-time rendering. It uses Uni-
fied Gaussian Primitives to represent static and dynamic el-
ements. We demonstrate the state-of-the-art performance
of our method on our own collected Dynamic City dataset
and the Waymo dataset, validating its effectiveness through
ablation studies. We plan to open-source code and the Dy-
namic City dataset to promote community development.
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